Cramer Type Large Deviations for Generalized Rank Statistics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample Path Large Deviations for Order Statistics

We consider the sample paths of the order statistics of independent and identically distributed random variables with common distribution function F . If F is strictly increasing but possibly having discontinuities, we prove that the sample paths of the order statistics satisfy the large deviation principle in the Skorokhod M1 topology. Sanov’s theorem is deduced in the SkorokhodM ′ 1 topology ...

متن کامل

Generalized Multivariate Rank Type Test Statistics via Spatial U-Quantiles

The classical univariate sign and signed rank tests for location have been extended over the years to the multivariate setting, including recent robust rotation invariant “spatial” versions. Here we introduce a broad class of rotation invariant multivariate spatial generalized rank type test statistics. For a given inference problem not restricted to location, the test statistics are linked thr...

متن کامل

Shannon entropy in generalized order statistics from Pareto-type distributions

In this paper, we derive the exact analytical expressions for the Shannon entropy of generalized orderstatistics from Pareto-type and related distributions.

متن کامل

Stone-Weierstrass type theorems for large deviations

We give a general version of Bryc’s theorem valid on any topological space and with any algebra A of real-valued continuous functions separating the points, or any wellseparating class. In absence of exponential tightness, and when the underlying space is locally compact regular and A constituted by functions vanishing at infinity, we give a sufficient condition on the functional Λ(·)|A to get ...

متن کامل

Cramér Type Moderate Deviations for Studentized U-statistics

The U-statistic elegantly and usefully generalizes the notion of a sample mean. Typical examples include (i) sample mean: h(x1, x2) = 12 (x1 + x2); (ii) sample variance: h(x1, x2) = 12 (x1 − x2); (iii) Gini’s mean difference: h(x1, x2) = |x1 − x2|; (iv) one-sample Wilcoxon’s statistic: h(x1, x2) = 1(x1 + x2 ≤ 0). The non-degenerate U-statistic shares many limiting properties with the sample mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1985

ISSN: 0091-1798

DOI: 10.1214/aop/1176993070